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Introduction 
Let F be a field of characteristic zero, F{x) = F(xl,  x2,...) the free associative 

algebra of non-commutative polynomials. Let V be a variety of P.I. algebras, 

given by a T ideal of identities I C_ F(x). Let 

v. 
Pn(V) - 

Vn n I  

denote the multilinear polynomials of degree n in Xl , . . . ,  xn in the relatively free 

algebra in V; then 

on(V) = dim ( V - - ~ / )  

is the nth eodimension of V. 

It was proved in [GZ2] that lim,~_~o~ ~ always exist and is a non-negative 

integer (see also [GZ1]). It is denoted by Exp(V) = lim,_~o~ ~ .  

The polynomial 

Cm+l ---- C m T I [ X l , - . .  , X m + l ; Y l , . . .  ,Ym] 

= E(--1)aXa(1)ylX~(2)y2""ymXa(m+l) 

is called the (m + 1)th Capelli polynomial. Let Cm+l denote the set of the 2 m 

polynomials obtained from cm+l by deleting a subset of the y's (i.e. substituting 

Yi --+ 1 for such a subset). Let I be the T ideal generated by Cm+l, with the 

corresponding variety Um+l. Capelli polynomials play a major role in P.I. theory 

and our objective here is to calculate Exp(Um+l). These polynomials were first 
introduced by Razmyslov IRa] in his construction of central polynomials for k • k 

matrices. It is easy to show that for a finite dimensional algebra A, if dim A -- m 

then A E Um+l (i.e. A satisfies f -= 0 for any f E Cm+l). Moreover, any finitely 
generated P.I. algebra A satisfies Cm+l for some m. See, for example, Theorem 

2.2 in [S]. 
Let Sn be the symmetric group. Then P,~(V) is a left FS~ module, hence 

defines the S~ character 

)6~(Y) = Xs,, (P,~(Y)), 

known as the cocharacter of V [R1]. It is well known that 

X,~(V) = E m~x~ 
)~l-n 

where A F- n (i.e.)~ is a partition of n), Xa the corresponding irreducible Sn char- 
aeter and ma the corresponding multiplicity of X~ in Xn (V). The nth cocharacter 

X,~(A) of a P.I. algebra is defined similarly. 
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In terms of cocharacters, Capelli identity is almost the general case in P.I. 

theory. Recall the notation H(k,g;n) = {(A1,A2,...) t- n I Ak+l _< g}, H(k,~) = 

Un H(k,  ~; n). For a general (P.I.) variety Y there exist k, g such that {xn(V)} C_ 

H(k,~),  i.e. )~n(V) = E~eg(k,s m,kX~ JAR]. However, A satisfies C,,~+1 if and 

only if {xn(A)} C_ H(m, 0) [a2]. 

Our objective here is to calculate Exp(Um+l). Since m~'s are always polyno- 

mially bounded [B], [BR2], it follows from [tl.3] that Exp(Um+l) < m. In case 

m = k 2, it follows from [R4] that 

Exp(Uk2+l) = k 2. 

For an arbitrary m we prove here the following 

THEOREM: 

(1) m -- 3 < Exp(Um+I) <_ m. 

(2) Exp(Um+I) = max{a1, a2, a3, a4} where 

aj = max{d 2 + . . .  + d~t d l , . . .  ,dj are positive integers and 

2 + j < m + l } .  (1) dl 2 + - - -  + d j  _ 

(3) Exp(Um+l) = m if  and only i f m  = q2 for some q. 

The proof, which is given below, applies, in an essential way, the classical 

theorem that every 0 < m < Z is a sum of at most four non-zero squares. 

Note that the codimension growth of Um+l does not depend on extensions of 

the ground field. Therefore, we assume below that F is an algebraically closed 

field of characteristic zero. 

LEMMA 1 : Let B1, . . . , Bk be finite-dimensional simple algebras over F such that 

B = B1 (3)... @ Bk is a subalgebra of finite-dimensioned algebra A with dacobson 

radical J = J(A).  Also let di = dimBi,  i = 1 , . . . , k ,  and d = dl + " "  +dk.  

Suppose that 

(2) B I J B 2 J . . .  JBk 7 ~ 0 

in A. Then A ~ Ud+k-1. 

Proof." Since F is algebraically closed, any Bi is isomorphic to some matrix 

algebra over F.  The inequality (2) implies that there exist C l , . . . , ck -1  E J ,  

e~ E Bi, i = 1 , . . . ,  k such that 

(3) e l c l e 2 c 2  . . . c k - l e k  r 
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each ei is some matrix unit from Bi,  and also 

(4) lici -- cil i+l = ci 

where li  E B~ is an identity element from B~. 

Now consider one of these algebras Bi and fix its basis u~, C from matrix 
�9 * " ' d i  

units�9 Obviously, one can choose matrix units a~, . . ,  a ~ , d~+l E Bi such that  

u i i i a i i i i i i i b i 
f i (  1' ' ", d,+X) . . . . .  # O, �9 . .  U d l , a l , . .  a l u l a 2  a d l Z t d l a d i + l  (5) 

but 

(6) i i i . .  a i 
f i ( c t a ( 1 ) , ' ' ' , u o - ( d i ) , a l , "  , d,+l)---- 0 

for any non-trivial permutation a E Sd~. Since b i is a matrix unit, there exist b~, 

bib b 2 = ei. b~ such that  i i i 

By our choice, using (4), we have 

(7) b~tb~+t=O i f t E B i @ . . . ( t ) B k  or t = c j  f o r j ~ i .  

(Clear if t E B1 (9 B2 . . . �9 Bk.  If t = cj, then t = l j c j l j + t  and l j B i  = B i l j  = 0 

if j r i.) Also 

bltb 2 = 0  i f t = c j  or t E B s ,  s r  (8) i i 

(similar reasons!). 

We now construct a polynomial which is alternating on d + k - 1 variables and 

has a non-zero value on A. Define it as Alt(g) for 

g : g ( x  I xldl ,  . , x k , .  X k _1 1 , ' ' ' ~  ", d k , Y l ,  " , Y d x + l '  y k , .  k . . . . . . . .  , " ' , Y d k + l ,  

Z l ,  �9 �9 �9 , Zk--l~ Wl~ �9 �9 �9  W2d)  

: W l f l W 2 Z I ? d ) 3 f 2 W 4 Z 2  " ' � 9  Z k - l W 2 k - l f k W 2 k ,  

where f i  f i(xix, .  �9 i i i = �9 , X d ~ , Y l , ' ' "  ,Yd,+l) is t he  m o n o m i a l  c o n s t r u c t e d  ear l ie r  for 

Bi and Alt means an alternation on all x~, . . .  ,xdkk, Z l , . . . ,  zk-1. 

It follows from (4) that  l icj = c j l s  = 0 if i r j ,  s r j + 1. Hence, from (5), 

(6), (7), (8) and (3) it follows that for the substitution ~ such that 

~ ( x } ) = - u } ,  ~o(y~)=a~, ~ ( z i ) = c ~ ,  ~ ( w u - i ) = b l ,  

) = 

we get 

This last inequality proves Lemma 1. 

~ ( i ! t ( g ) )  = ~(g)  -- e l C l e 2 C 2 � 9  ~ O. 

| 
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LEMMA 2: For any k > 1 and for any integers ql , . . . ,qk  > 1 there exists a 

finite-dimensional algebra A = B -4- J with a semisimple subalgebra B and the 

Jacobson radical J such that 

(1) B = B1 @ " .  @ Bk. 

(2) All Bi's are simple with dim Bi = q2. 

(3) Exp(A) = ql 2 + . . .  -4- q2 = dimB.  

(4) A C Ud+k where d = Exp(A). 

Proof: We construct A as block upper-triangular matrices 

B1 * ) 
B2 

"., 

0 Bk 

where Bi are the q~ • qi matrices over the field F." Then B = B1 q~ . . .  �9 Bk is a 

semisimple subalgebra in A and J consists of all block strictly upper-triangular 

matrices. 

By [GZ1] the exponent of A is exactly d imB  = q2 + . . .  -4- q~ since 

B1JB2J ' . .  JBk # O. 

On the other hand, any multilinear polynomial f = f ( x l , . . .  ,xd+k,Yl,Y2,...) 

alternating on the d + k variables X l , . . . ,  Xd+k is equal to zero identically on A. 

Indeed, by multilinearity we can consider only substitutions ~v: x~ --+ 5i, Yj --+ ~j, 

xi ,yj  C A, such that  xi C B or xi E J for 1 < i < d +  k. However, i fSi  E B for 

d + 1 or more ~'s then ~ f  = f (5 ,  ~) = 0 (by alternation). On the other hand, if 

we substitute more than k - 1 elements from J then qof = 0 since jk  = 0. Hence 

A satisfies all Capelli identities of rank d + k. 1 

From [R2], [BR1], [R3] and [GZ1] follows 

LEMMA 3: The exponent t of the variety Um+l exists, is an integer and does not 

exceed m. 

The proof of the Theorem: By Lemma 3 the exponent t of Um+l exists and 

t = Exp(Um+I) < m. 

If we define integers aj ,  j _> 1 as in (1), then by Lemma 2 one has t >__ aj and 

therefore 

(9) t > ao = max{al,  a2, a3, a4}. 
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We now apply the classical theorem (proved by Lagrange more than 200 years 

ago) stat ing that  any positive integer is the sum of at most four squares of 

integers. (For the history of that  theorem, see for example [NZM].) 

Consider such a decomposition for m - 3: 

(10) m-3=q2+.. . :4-q 2, ql, . . . ,qk>l, l < k < 4 .  

It  follows from (10) that  

q2 + . . .  +qk2 + k  < ql 2 + . . .  +q2 + 4  < m +  1. 

Applying Lemma 2 again we see that  one of a l , . . . ,  a4 is not less than m - 3. 

Hence a0 > m - 3 and t > m - 3 by (9), and the first s tatement of the theorem 

is proved. 

To prove the second statement recall that  any variety with a Capelli iden- 

t i ty can be generated by some finite-dimensional algebra, i.e. Um+l = vat(A), 

dim A < oc (see Theorem 2.2 in [K]). In particular Exp(A)should  be equal to t. 

It  was shown in [GZ1] that  in this case there exists a family of simple subalgebras 

B 1 , . . . ,  Bk such that  B1 • - - .  G Bk is a semi-simple subalgebra in A and 

BIJB2 J. ' .  JBk # O, 

where J is the Jacobson radical of A. In addition, Exp(A) = t = dim B1 + ".. + 

dim Bk. 

Now A E U,~+I and, by Lemma 1, A ~ Ut+k-1. Hence t + k - 1 is strictly less 

t h a n m + l , i . e . t + k - l < m .  It  follows t h a t t < m + l - k .  

Now if k > 5 then 

t < m +  l - k < m +  l - 5 = m - 4 < m - 3 ,  

which contradicts the first s tatement of the theorem. If k < 4 then denote 

dim Bi = q2. Recall that  our field is algebraically closed, so any simple finite 

dimensional algebra is a matrix algebra. By definition of a l~ . . . ,  a4 one has 

(11) t=q2 +...+q~ <_ak <ao. 

Comparing (9) and (11) we get the second statement of the theorem. 

Finally, for m = q2 it follows from (1) that  al = q2 = m and Exp(Um+l) = m. 

If m # q2, then al + 1 < m + 1 and al < m - 1. Also a2, a3, a4 cannot be greater 
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than m -  1 by definition. This proves the inequality Exp(U,~+l) _< m -  1 ~ m 

in the case m ~ q2. | 

We conclude by showing, by examples, that  the estimation 

m - 3 < Exp(Um+l) _< m 

cannot be improved. 

One can easily check that  Exp(Um+l) = m if m = 4, Exp(Um+l) = m - 1 if 

m = 3, Exp(Um+I) = m - 2 if m = 7. Direct computations based on the 2nd 

statement  of the theorem show that  Exp(Uss) = 54 = 57 - 3. 

Remark: As mentioned in the introduction, Capelli identities are a partial case 

of the "hook condition" and for arbitrary variety V there is an infinite hook 

H(k,~)  such that  xn(Y) lies in H(k,~). 

Since Um+l corresponds exactly to H(m,O), our theorem shows that  the 

difference between the exponent t of Um+l and the size m of this strip cannot be 

more than 3. 

Define Uk,~ as a variety given by 

m~ = 0 in xn(Uk,~) = ~-~m)~x)~ 
.kFn 

if Ak+l > g. In other words, Uk,t is the biggest variety whose cocharacter lies in 

the hook H(k, g). We say that  k + g is the size of hook H(k, g). 
It  follows from [BR1], [BR2] that  Exp(Uk,t) <_ k + g, and the following question 

arises: is there an upper  bound for k + g - Exp(Uk+t) which is independent of k 

and g? 

It  is known that  any variety can be generated by the Grassman envelope G(A) 
of some finite.dimensional 7_,2-graded algebra A [K, Theorem 2.3]. On the other 

hand, it was proved in [GZ2] that  Exp(G(A)) exists and is an integer. Moreover, 

it was shown that  the nth  cocharacter of G(A) "asymptotically coincides" with 

some hook H(r,t), where r -- dimB0, t -- dimB1, Exp(G(A))  = r + t and 

B = B0 + B1 is a semisimple Z2-graded subalgebra in A. It  follows from Kemer 's  

classification [K] that  for any Z2-graded semisimple algebra we have 

dim B1 _< dim Bo. 

Hence, t <__ r and Exp(Uk,~) cannot be more than 2k. In particular, Exp(U1,~) = 2 

for any g > 1. It shows that  there is no such upper bound for the difference 

(k + ~) - Exp(Uk,t) which is independent of k + ~. 
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A d d e n d u m  

We thank S. Ahlgren for his essential help with this note. 

Given m E Z+, let 

aj(rn) = max{d~ + - - -  +d~J d l , . . . , d j  E Z+ and dl 2 + - - -  +a~ < m +  l - j } .  

The classical theorem that every positive integer is a sum of at most four 

squares clearly implies that a4(m) = m - 3. 
Define: b(m) = max{a1, . . .  ,a4}. 
It was proved in this paper that b(m) is the exponential rate of growth of the 

codimensions of the Capelli identity Cm+l Ix1,-- �9 Xm+l; Yl,-- �9 Y,~]" 

D e n o t e W i = { m > l i b ( m ) = m - i } ,  0 < i < 3 .  
The n a t u r a l  dens i t ies  of the Wi's are given below. 

Given W c Z+, the natural density d(W) is defined as 

d(W) = lim I{k �9 WI k _< n}I 
n----~ o o  n 

THEOREM: Each of the above sets Wo, . . . ,  W3 is in~nite. Moreover, they have 
the following natural densities: 

d(Wo) = 0, d(W1) = 0, d(W2) = 5/6, d(W3) = 1/6. 

Proof." We have Z+ = W0 U. . .  U W3, a disjoint union. 
(1) Clearly, W0 = {n 2] n > 1} is infinite, with density d(Wo) = O. 
(2) W1 = {hi n is not a square and n - 1 -- a 2 + b2}. Trivially, W1 is infinite 

[let m = n 2 + 1 �9 Wo + 1, then m ~ Wo and m �9 W1, so W1 _~ Wo + 1]. 

Let 1-[2 = { a2 + b21 a,b �9 Z}, then W1 C_ 1--I2 +1: 

m e W l ~ m - l e l - [ 2 ~ m e l - [ 2 + l .  Let ~ 2 ( x ) = { t E 1 - L i t < _ x } .  

By a classical result of Edmund Landau [1908], 

X 

Thus d(W1) = O. 
(3) Given A C_ Z+, let A ~ = Z+ - A denote its complement. Let 

Y[3 = {aS + + a,b,e �9 Z t  

Then 

W 2 = {  n i n - 2 E H 3  a n d n ~ W o U W I } = { n J n - 2 E I - I 3 } M W ~ M W ~ .  



Vol. 115, 2000 CODIMENSIONS FOR CAPELLI IDENTITIES 341 

Since d(Wo) = d(W1) -- 0, hence d(W2) -= d({n[ n - 2 C 1-[3}) ---- d(YI3 +2)  -- 

d(I-I3 ). 
By  a classical t heorem of Legendre [1798], m is not a sum of three  squares (i.e. 

m E [I'3) if and only if m = 4'~(8k + 7). 
1 1 2  1 1 1 

The  densi ty  of l-I'3 is d(YI3 ) = I (1  + x + (~) + - - - )  = ~ .  ~ - ~. 
! 

Thus  d(W3) = 1 - d(1-I3) = 5. 

(4) Since Z>_l = Wo u . . .  (J W3 is a disjoint union, clearly 

5 1 
d(W3) -- 1 - [d(W0) + d(W1) + d(W2)] = 1 - -6 -- 6" 

In par t icular ,  d(W3) = I" | 
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